Covariance operator estimation via adaptive thresholding
Omar Al-Ghattas and
Daniel Sanz-Alonso
Stochastic Processes and their Applications, 2025, vol. 189, issue C
Abstract:
This paper studies sparse covariance operator estimation for nonstationary processes with sharply varying marginal variance and small correlation lengthscale. We introduce a covariance operator estimator that adaptively thresholds the sample covariance function using an estimate of the variance component. Building on recent results from empirical process theory, we derive an operator norm bound on the estimation error in terms of the sparsity level of the covariance and the expected supremum of a normalized process. Our theory and numerical simulations demonstrate the advantage of adaptive threshold estimators over universal threshold and sample covariance estimators in nonstationary settings.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925001462
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:189:y:2025:i:c:s0304414925001462
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2025.104705
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().