EconPapers    
Economics at your fingertips  
 

Spectral bounds for exit times on metric measure Dirichlet spaces and applications

Phanuel Mariano and Jing Wang

Stochastic Processes and their Applications, 2025, vol. 189, issue C

Abstract: Assuming the heat kernel on a doubling Dirichlet metric measure space has a sub-Gaussian bound, we prove an asymptotically sharp spectral upper bound on the survival probability of the associated diffusion process. As a consequence, we can show that the supremum of the mean exit time over all starting points is finite if and only if the bottom of the spectrum is positive. Among several applications, we show that the spectral upper bound on the survival probability implies a bound for the Hot Spots constant for Riemannian manifolds. Our results apply to interesting geometric settings including sub-Riemannian manifolds and fractals.

Keywords: Exit times; Spectral bounds; Heat kernel; Heat semigroup (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925001486
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:189:y:2025:i:c:s0304414925001486

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2025.104707

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-26
Handle: RePEc:eee:spapps:v:189:y:2025:i:c:s0304414925001486