EconPapers    
Economics at your fingertips  
 

Global strong solution for the stochastic tamed Chemotaxis–Navier–Stokes system in R3

Fan Xu, Lei Zhang and Bin Liu

Stochastic Processes and their Applications, 2025, vol. 189, issue C

Abstract: In this work, we consider the 3D Cauchy problem for a coupled system arising in biomathematics, consisting of a chemotaxis model with a cubic logistic source and the stochastic tamed Navier–Stokes equations (STCNS, for short). Our main goal is to establish the existence and uniqueness of a global strong solution (strong in both the probabilistic and PDE senses) for the 3D STCNS system with large initial data. To achieve this, we first introduce a triple approximation scheme by using the Friedrichs mollifier, frequency truncation operators, and cut-off functions. This scheme enables the construction of sufficiently smooth approximate solutions and facilitates the effective application of the entropy-energy method. Then, based on a newly derived stochastic version of the entropy-energy inequality, we further establish some a priori higher-order energy estimates, which together with the stochastic compactness method, allow us to construct the strong solution for the STCNS system.

Keywords: Stochastic tamed Chemotaxis–Navier–Stokes system; Entropy-energy estimate; Global strong solution (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414925001759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:189:y:2025:i:c:s0304414925001759

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2025.104732

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-26
Handle: RePEc:eee:spapps:v:189:y:2025:i:c:s0304414925001759