The distributions of certain record statistics from a random number of observations
J. A. Bunge and
H. N. Nagaraja
Stochastic Processes and their Applications, 1991, vol. 38, issue 1, 167-183
Abstract:
Suppose we observe a random number N of independent identically distributed random variables in sequence. The record values are the successive maxima of this sequence. Assuming that N and the observations are independent, we obtain the joint distribution of the number of records and their values. Using this, the dependence structures of record values and interrecord counts are studied; this yields a necessary and sufficient condition for N to have geometric tail. In addition, we obtain the distribution of the number of records. When N is negative binomial, the expressions can be simplified; in one case the number of records has an exact Poisson distribution. Our results are applied to point process models considered by Gaver (1976) and Westcott (1977). Our results remain applicable when the assumption of identical distribution is relaxed to allow the distribution to change after a record event, as proposed by Pfeifer (1982).
Keywords: random; record; model; record; values; number; of; records; interrecord; counts; point; processes; partial; fraction; expansion; geometric; distribution; negative; binomial; distribution (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(91)90077-P
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:38:y:1991:i:1:p:167-183
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().