EconPapers    
Economics at your fingertips  
 

Markov Chains with finite convergence time

Israel Brosh and Yigal Gerchak

Stochastic Processes and their Applications, 1978, vol. 7, issue 3, 247-253

Abstract: We study the properties of finite ergodic Markov Chains whose transition probability matrix P is singular. The results establish bounds on the convergence time of Pm to a matrix where all the rows are equal to the stationary distribution of P. The results suggest a simple rule for identifying the singular matrices which do not have a finite convergence time. We next study finite convergence to the stationary distribution independent of the initial distribution. The results establish the connection between the convergence time and the order of the minimal polynomial of the transition probability matrix. A queuing problem and a maintenance Markovian decision problem which possess the property of rapid convergence are presented.

Keywords: Markov; chains; convergence; time; leading; vectors; accessibility; null; space; minimal; polynomial; eigenvalues; Markov; decision; problem (search for similar items in EconPapers)
Date: 1978
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(78)90044-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:7:y:1978:i:3:p:247-253

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:7:y:1978:i:3:p:247-253