EconPapers    
Economics at your fingertips  
 

Weakly pinned random walk on the wall: pathwise descriptions of the phase transition

Yasuki Isozaki and Nobuo Yoshida

Stochastic Processes and their Applications, 2001, vol. 96, issue 2, 261-284

Abstract: We consider a one-dimensional random walk which is conditioned to stay non-negative and is "weakly pinned" to zero. This model is known to exhibit a phase transition as the strength of the weak pinning varies. We prove path space limit theorems which describe the macroscopic shape of the path for all values of the pinning strength. If the pinning is less than (resp. equal to) the critical strength, then the limit process is the Brownian meander (resp. reflecting Brownian motion). If the pinning strength is supercritical, then the limit process is a positively recurrent Markov chain with a strong mixing property.

Keywords: Random; walk; Weak; pinning; Wall; condition; Entropic; repulsion; Wetting; transition; Limit; theorems (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00118-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:96:y:2001:i:2:p:261-284

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:96:y:2001:i:2:p:261-284