Bounds on the expected value of maximum loss of fractional Brownian motion
Ceren Vardar-Acar and
Hatice Bulut
Statistics & Probability Letters, 2015, vol. 104, issue C, 117-122
Abstract:
It has been theoretically proven through present study that the expected value of maximum loss of fractional Brownian motion up to fixed time t with Hurst parameter [1/2,1) is bounded above by tHπ2 and below by tH2. These new bounds provide improvement on those bounds which have been previously derived in the literature. In order to search for closer bounds, numerical study is also performed through discretization method and multivariate Gaussian variables have been examined. The simulated values of the expected value of maximum loss of fractional Brownian motion have been provided through the use of Cholesky decomposition. As a consequence of the simulation study, it has been observed that as the Hurst parameter increases, the values of the expected maximum loss of fractional Brownian motion decreases.
Keywords: Cholesky decomposition; Hurst parameter; Fractional Brownian motion; Maximum loss; Sudakov–Fernique inequality (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715215001509
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:104:y:2015:i:c:p:117-122
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2015.05.001
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().