Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification
Aijun Yang,
Xuejun Jiang,
Pengfei Liu and
Jinguan Lin
Statistics & Probability Letters, 2016, vol. 119, issue C, 241-247
Abstract:
Selecting a small number of relevant genes for cancer classification has received a great deal of attention in microarray data analysis. In this paper, a sparse Bayesian multinomial probit regression model with correlation prior is proposed. Based on simulated and real datasets, we demonstrate that the proposed method performs better than five other competing methods in terms of variable selection and classification.
Keywords: Sparse Bayesian method; Multinomial probit model; Correlation prior; High-dimensional data classification (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216301535
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:119:y:2016:i:c:p:241-247
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2016.08.008
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().