EconPapers    
Economics at your fingertips  
 

The distance between a naive cumulative estimator and its least concave majorant

Hendrik P. Lopuhaä and Eni Musta

Statistics & Probability Letters, 2018, vol. 139, issue C, 119-128

Abstract: We consider the process Λ̂n−Λn, where Λn is a cadlag step estimator for the primitive Λ of a nonincreasing function λ on [0,1], and Λ̂n is the least concave majorant of Λn. We extend the results in Kulikov and Lopuhaä (2006, 2008) to the general setting considered in Durot (2007). Under this setting we prove that a suitably scaled version of Λ̂n−Λn converges in distribution to the corresponding process for two-sided Brownian motion with parabolic drift and we establish a central limit theorem for the Lp-distance between Λ̂n and Λn.

Keywords: Least concave majorant; Grenander-type estimator; Limit distribution; Central limit theorem for Lp-distance; Brownian motion with parabolic drift (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521830141X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:139:y:2018:i:c:p:119-128

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2018.04.001

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:139:y:2018:i:c:p:119-128