EconPapers    
Economics at your fingertips  
 

On Schott’s and Mao’s test statistics for independence of normal random vectors

Shuhua Chang and Yongcheng Qi

Statistics & Probability Letters, 2018, vol. 140, issue C, 132-141

Abstract: Consider a random sample of n independently and identically distributed p-dimensional normal random vectors. A test statistic for complete independence of high-dimensional normal distributions, proposed by Schott (2005), is defined as the sum of squared Pearson’s correlation coefficients. A modified test statistic has been proposed by Mao (2014). Under the assumption of complete independence, both test statistics are asymptotically normal if the limit limn→∞p∕n exists and is finite. In this paper, we investigate the limiting distributions for both Schott’s and Mao’s test statistics. We show that both test statistics, after suitably normalized, converge in distribution to the standard normal as long as both n and p tend to infinity. Furthermore, we show that the distribution functions of the test statistics can be approximated very well by a chi-square distribution function with p(p−1)∕2 degrees of freedom as n tends to infinity regardless of how p changes with n.

Keywords: High dimension; Complete independence; Normal distribution; Limiting distribution (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218301901
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:140:y:2018:i:c:p:132-141

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2018.05.009

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:140:y:2018:i:c:p:132-141