Optimal stopping problems for running minima with positive discounting rates
Pavel V. Gapeev
Statistics & Probability Letters, 2020, vol. 167, issue C
Abstract:
We present analytic solutions to some optimal stopping problems for the running minimum of a geometric Brownian motion with exponential positive discounting rates. The proof is based on the reduction of the original problems to the associated free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the minimal solutions of certain first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of perpetual dual American lookback options with fixed and floating strikes in the Black–Merton–Scholes model from the point of view of short sellers.
Keywords: Optimal stopping problem; Exponential positive discounting rate; Brownian motion; Running minimum process; Free-boundary problem; A change-of-variable formula with local time on surfaces (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220302029
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:167:y:2020:i:c:s0167715220302029
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2020.108899
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().