Minimax estimation of covariance and precision matrices for high-dimensional time series with long-memory
Qihu Zhang,
Cheolwoo Park and
Jongik Chung
Statistics & Probability Letters, 2021, vol. 177, issue C
Abstract:
This paper concerns the minimax estimation of covariance and precision matrices for high-dimensional time series with long-memory property. We generalize the minimax results for the convergence rates of the estimation of covariance matrices in Shu and Nan (2019) in several directions with a mild assumption, which was mentioned as an open problem in Supplement to Cai and Zhou (2012) for i.i.d. data. We also obtain the minimax results for the convergence rates of the estimation of precision matrices under various norms, which is not considered by Shu and Nan (2019) and Cai and Zhou (2012).
Keywords: High-dimensional data; Long-memory; Covariance matrix estimation; Precision matrix estimation; Minimax optimal convergence rates; Matrix norm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715221001395
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:177:y:2021:i:c:s0167715221001395
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2021.109177
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().