EconPapers    
Economics at your fingertips  
 

Hyperbolic cosine ratio and hyperbolic sine ratio random fields

Chunsheng Ma

Statistics & Probability Letters, 2021, vol. 179, issue C

Abstract: This paper introduces several vector random fields whose finite-dimensional characteristic functions are of hyperbolic type, including generalized logistic, hyperbolic secant, hyperbolic tangent, hyperbolic cosine ratio, and hyperbolic sine ratio vector random fields. They are elliptically contoured vector random fields with all orders of moments, and are infinitely divisible. In the scalar case, we make the peakedness comparison among these random fields. Hyperbolic cosine ratio and hyperbolic since ratio Lévy processes are formulated as well.

Keywords: Elliptically contoured random field; Gaussian random field; Peakedness; Stochastic order (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715221001747
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:179:y:2021:i:c:s0167715221001747

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2021.109212

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:179:y:2021:i:c:s0167715221001747