A characterization of normality via convex likelihood ratios
Royi Jacobovic and
Offer Kella
Statistics & Probability Letters, 2022, vol. 186, issue C
Abstract:
This work includes a new characterization of the multivariate normal distribution. In particular, it is shown that a positive density function f is Gaussian if and only if the f(x+y)/f(x) is convex in x for every y. This result has implications to recent research regarding inadmissibility of a test studied by Moran (1973).
Keywords: Characterization of probability distributions; Multivariate normal; Gaussian; Convex likelihood ratio (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715222000542
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:186:y:2022:i:c:s0167715222000542
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2022.109455
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().