RDS free CLT for spiked eigenvalues of high-dimensional covariance matrices
Yan Liu,
Zhidong Bai,
Hua Li,
Jiang Hu,
Zhihui Lv and
Shurong Zheng
Statistics & Probability Letters, 2022, vol. 187, issue C
Abstract:
In this paper, we extend the CLT for sample spiked eigenvalues in the generalized spiked covariance model proposed in Jiang and Bai (2021a) to the case where RDS is considered free, i.e., except for an upper limit of the RDS to guarantee that the spiked eigenvalue is distant, there is no limit for p/n, which is the Ratio of Dimension to sample Size (RDS). Therefore, the choice of dimensionality and sample size is more flexible in our regime.
Keywords: High-dimensional covariance matrix; Random matrix theory; Spiked model; Central limit theorem; Ratio of Dimension to sample Size; Ultra-high dimension (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715222000827
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:187:y:2022:i:c:s0167715222000827
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2022.109501
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().