EconPapers    
Economics at your fingertips  
 

A quantile domain perspective on the relationships between optimal grouping, spacing and stratification problems

R. L. Eubank

Statistics & Probability Letters, 1982, vol. 1, issue 2, 69-73

Abstract: The relationships between two distributions having the same solutions for problems of optimal spacing selection for the asymptotically best linear unbiased estimator of a location or scale parameter or for problems of optimal stratification for estimation of a population mean are investigated. Easily checked necessary and sufficient conditions under which two distributions have identical solutions to these problems are given in terms of their quantile and density-quantile functions. As an application of these results a quantile domain analoque of a theorem due to Adatia and Chan (1981) on the equivalence of optimal grouping, spacing and stratification problems is obtained.

Keywords: Approximation; density-quantile; function; quantile; function; optimal; grouping; optimal; spacing; optimal; stratification (search for similar items in EconPapers)
Date: 1982
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(82)90018-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:1:y:1982:i:2:p:69-73

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:1:y:1982:i:2:p:69-73