Chainability of infinitely divisible measures
Shaul K. Bar-Lev and
Gérard Letac
Statistics & Probability Letters, 2025, vol. 216, issue C
Abstract:
Let ρ0 be a positive measure on R with Laplace transform Lρ0(θ) defined on a set whose interior Θ(ρ0) is nonempty and let kρ0=logLρ0 be its cumulant transform. Then ρ0 is infinitely divisible iff kρ0′′ is a Laplace transform of some positive measure ρ1. If also ρ1 is infinitely divisible, then kρ1′′ is a Laplace transform of some positive measure ρ2 and so forth, until we reach a k such that ρk is not infinitely divisible. If such a k does not exist, we say that ρ0 is infinitely chainable. We say that ρ0 is infinitely chainable of order k0 if it is infinitely chainable and k0 is the smallest k for which ρk=ρk+1. In this note, we prove that ρ0 is infinitely chainable order k0 iff ρk0 falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.
Keywords: Infinitely divisible measure; Lévy measure; Chainability (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224002256
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002256
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110256
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().