On testing mean of high dimensional compositional data
Qianqian Jiang,
Wenbo Li and
Zeng Li
Statistics & Probability Letters, 2025, vol. 222, issue C
Abstract:
We investigate one/two-sample mean tests for high-dimensional compositional data when the number of variables is comparable with the sample size, as commonly encountered in microbiome research. Existing methods mainly focus on max-type test statistics which are suitable for detecting sparse signals. However, in this paper, we introduce a novel approach using sum-type test statistics which are capable of detecting weak but dense signals. By establishing the asymptotic independence between the max-type and sum-type test statistics, we further propose a combined max-sum type test to cover both cases. We derived the asymptotic null distributions and power functions for these test statistics. Simulation studies and real data applications demonstrate the superiority of our max-sum type test statistics which exhibit robust performance regardless of data sparsity.
Keywords: High-dimensional compositional data; One/Two-sample mean test; Max-sum type; Sum-type; Max-type (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715225000410
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:222:y:2025:i:c:s0167715225000410
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2025.110396
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().