On weak convergence of Gaussian conditional distributions
Sarah Lumpp and
Mathias Drton
Statistics & Probability Letters, 2025, vol. 226, issue C
Abstract:
Weak convergence of joint distributions generally does not imply convergence of conditional distributions. In particular, conditional distributions need not converge when joint Gaussian distributions converge to a singular Gaussian limit. Algebraically, this is due to the fact that at singular covariance matrices, Schur complements are not continuous functions of the matrix entries. Our results lay out special conditions under which convergence of Gaussian conditional distributions nevertheless occurs, and we exemplify how this allows one to reason about conditional independence in a new class of graphical models.
Keywords: Conditional distribution; Schur complement; Singular normal distribution; Matrix determinant lemma; Lyapunov equation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715225001427
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:226:y:2025:i:c:s0167715225001427
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2025.110497
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().