EconPapers    
Economics at your fingertips  
 

On the identifiability of measurement error in the bifurcating autoregressive model

Richard Huggins

Statistics & Probability Letters, 1996, vol. 27, issue 1, 17-23

Abstract: Huggins and Staudte (1994) considered a mixed linear model for the analysis of cell lineage data and in models for the covariance structure which involved measurement error, it was not immediately clear that the parameters involved were identifiable. Whilst a numerical examination of the Hessian matrix at the estimated parameter values gave some reassurance, this was not theoretically satisfying. Here a matrix formulation of the robust estimating functions of Huggins (1993a, b) as applied in Huggins and Staudte (1994), which include the maximum likelihood estimating functions under the assumption of multivariate normality as a special case, is given along with a direct proof linking identifiability expressed in terms of the estimating functions with the information matrix or its analogue in more general settings. The resulting conditions on the estimating functions may then be checked globally using computer algebra, suggesting a method for establishing identifiability in mixed linear models in general.

Keywords: Identifiable; parameters; Bifurcating; autoregressive; model; Computer; algebra (search for similar items in EconPapers)
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(95)00038-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:27:y:1996:i:1:p:17-23

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:27:y:1996:i:1:p:17-23