Testing for trends in correlated data
Hongguang Sun and
Sastry G. Pantula
Statistics & Probability Letters, 1999, vol. 41, issue 1, 87-95
Abstract:
The problem of testing for the significance of a linear trend in the presence of positively correlated errors is considered. Test criteria based on ordinary least squares, conditional maximum likelihood, estimated generalized least squares and maximum likelihood estimates tend to have higher significance levels than nominal levels for positively correlated series of moderate length. In this paper, we study three alternative methods: (a) pre-test, (b) bias-adjusted, and (c) bootstrap-based procedures. A simulation study is used to compare the empirical level and power of different procedures. An example is used to illustrate the procedures.
Keywords: Maximum; likelihood; Power; Bootstrap (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00131-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:41:y:1999:i:1:p:87-95
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().