Trimmed, Bayesian and admissible estimators
Jana Jurecková and
Lev B. Klebanov
Statistics & Probability Letters, 1999, vol. 42, issue 1, 47-51
Abstract:
The authors proved in [5] that the robust M- and L-estimators of location, which are independent of the extreme order statistics of the sample, cannot be admissible with respect to L1 risk in the class of translation equivariant estimators. This result is now extended in two respects: (i) We show that these estimators cannot be even Bayesian, under some regularity conditions, with respect to a strictly convex and continuously differentiable loss function; (ii) moreover, we extend the result to the linear regression model and show the inadmissibility of regression equivariant estimators, trimming-off the observations with nonpositive [nonnegative] residuals with respect to [alpha]1- [[alpha]2]-regression quantiles, respectively, for some 0
Keywords: Admissibility; Bayesian; estimators; Trimmed; estimators (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00187-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:42:y:1999:i:1:p:47-51
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().