Sharp linear and block shrinkage wavelet estimation
Sam Efromovich
Statistics & Probability Letters, 2000, vol. 49, issue 4, 323-329
Abstract:
The results of Hall et al. (1998, Ann. Statist. 26, 922-943) together with Efromovich (2000, Bernoulli) imply that a data-driven block shrinkage wavelet estimator, which mimics a sharp minimax linear oracle, is rate optimal over spatially inhomogeneous function spaces. This result does not contradict to known theoretical results about the rate deficiency of linear estimates; instead, it tells us that adaptive estimates that mimic an optimal linear oracle may be possible alternatives to threshold-adaptive wavelet estimates. New results on sharp minimax linear estimation over Besov spaces and data-driven block shrinkage estimation for small sample sizes are presented that further develop the "linear" branch of the wavelet estimation theory.
Keywords: Adaptation; Asymptotic; Exact; constant; Mean; integrated; squared; error; Nonparametric; estimation; Numerical; study (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00064-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:49:y:2000:i:4:p:323-329
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().