EconPapers    
Economics at your fingertips  
 

Estimation of a bivariate symmetric distribution function

Reza Modarres

Statistics & Probability Letters, 2003, vol. 63, issue 1, 25-34

Abstract: We consider the efficient estimation of a bivariate distribution function (DF) under the class of radially symmetric distributions and propose an estimator based on the mean of the empirical distribution and survival functions. We obtain the mean and variance of the estimator and show that it has an asymptotic normal distribution. We also show that the nonparametric maximum likelihood estimator of the bivariate DF coincides with the new estimator under radial symmetry. We study the asymptotic relative efficiency of this estimator and show that it results in a minimum of 50% reduction in sample size over the empirical DF at any point (x,y) in . A bootstrap procedure to test whether the data support a radially symmetric model is examined. A simulation study compares the size and power of this test under bivariate normality, against alternatives in the Plackett's family of bivariate distributions, to two other procedures based on Kolmogorov-Smirnov distance.

Keywords: Distribution; function; Nonparametric; MLE; Radial; symmetry; Bootstrap; Bivariate; Kolmogorov-Smirnov; test; Copula (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00429-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:63:y:2003:i:1:p:25-34

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:63:y:2003:i:1:p:25-34