EconPapers    
Economics at your fingertips  
 

Weighted empirical likelihood inference

Changbao Wu

Statistics & Probability Letters, 2004, vol. 66, issue 1, 67-79

Abstract: A weighted empirical likelihood approach is proposed to take account of the heteroscedastic structure of the data. The resulting weighted empirical likelihood ratio statistic is shown to have a limiting chisquare distribution. A limited simulation study shows that the associated confidence intervals for a population mean or a regression coefficient have more accurate coverage probabilities and more balanced two-sided tail errors when the sample size is small or moderate. The proposed weighted empirical likelihood method also provides more efficient point estimators for a population mean in the presence of side information. Large sample resemblances between the weighted and the unweighted empirical likelihood estimators are characterized through high-order asymptotics and small sample discrepancies of these estimators are investigated through simulation. The proposed weighted approach reduces to the usual unweighted empirical likelihood method under a homogeneous variance structure.

Keywords: Confidence; interval; Finite; population; Heteroscedasticity; Linear; regression; model; Minimum; entropy; distance; Point; estimation (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00309-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:66:y:2004:i:1:p:67-79

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:66:y:2004:i:1:p:67-79