EconPapers    
Economics at your fingertips  
 

Convergence of posteriors for discretized log Gaussian Cox processes

Rasmus Waagepetersen

Statistics & Probability Letters, 2004, vol. 66, issue 3, 229-235

Abstract: In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example.

Keywords: Bayesian; inference; Discretization; Log; Gaussian; Cox; process; Monte; Carlo; Point; processes; Posterior (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00307-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:66:y:2004:i:3:p:229-235

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:66:y:2004:i:3:p:229-235