Shrinkage estimation for convex polyhedral cones
Anna Amirdjanova and
Michael Woodroofe
Statistics & Probability Letters, 2004, vol. 70, issue 1, 87-94
Abstract:
Estimation of a multivariate normal mean is considered when the latter is known to belong to a convex polyhedron. It is shown that shrinking the maximum likelihood estimator towards an appropriate target can reduce mean squared error. The proof combines an unbiased estimator of a risk difference with some geometrical considerations. When applied to the monotone regression problem, the main result shows that shrinking the maximum likelihood estimator towards modifications that have been suggested to alleviate the spiking problem can reduce mean squared error.
Keywords: Degrees; of; freedom; Maximum; likelihood; estimator; Mean; squared; error; Primal-dual; bases; Projections; Stein's; Identity; Target; estimator (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00230-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:70:y:2004:i:1:p:87-94
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().