EconPapers    
Economics at your fingertips  
 

The linear minimax estimator of stochastic regression coefficients and parameters under quadratic loss function

Sheng-Hua Yu

Statistics & Probability Letters, 2007, vol. 77, issue 1, 54-62

Abstract: Consider stochastic effects linear model Y=X[beta]+[epsilon] with E([beta])=A[alpha],Cov([beta])=[sigma]2V1, E([epsilon])=0,Cov([epsilon])=[sigma]2V2, and E([beta][epsilon]')=0, where V1 and V2 are known positive definite matrices, [alpha][set membership, variant]Rk and [sigma]2>0 are unknown parameters. In this paper, we consider a particular quadratic loss function . On the basis of this we obtain the unique linear minimax estimator of the linear estimable function S[alpha]+Q[beta].

Keywords: Linear; model; Random; effect; Maximum; risk; function (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00194-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:1:p:54-62

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:77:y:2007:i:1:p:54-62