Asymptotic efficiency of the ordinary least-squares estimator for sur models with integrated regressors
Dong Wan Shin,
Han Joon Kim and
Won-Chul Jhee
Statistics & Probability Letters, 2007, vol. 77, issue 1, 75-82
Abstract:
For seemingly unrelated regression (SUR) models with integrated regressors, two sufficient conditions are identified, under which the ordinary least-squares estimator (OLSE) is asymptotically efficient. The first condition is that every pair of regressor processes are cointegrated in a specific way that one regressor is a linear combination of the other regressor up to a zero-mean stationary error and the second condition is that, for every pair of regressor processes, the pair of error processes deriving the regressor processes have zero long-run covariance.
Keywords: Cointegration; Efficiency; Generalized; least-squares; estimator; Long-run; covariance (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00197-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:1:p:75-82
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().