Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process
Cecilia Mancini
Statistics & Probability Letters, 2008, vol. 78, issue 7, 869-879
Abstract:
We consider a jump-diffusion Lévy model, which is often used in financial and risk theory applications. Using discrete observations of the process, we consider a threshold estimator of the diffusion coefficient, and we show that it satisfies a large deviation principle. That gives us both the strong consistency of the estimator and an accurate measure of the estimation error.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00293-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:7:p:869-879
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().