On a generalization of the Laplace approximation
David J. Nott,
Mark Fielding and
Daniela Leonte
Statistics & Probability Letters, 2009, vol. 79, issue 11, 1397-1403
Abstract:
Laplace approximation is one commonly used approach to the calculation of difficult integrals arising in Bayesian inference and the analysis of random effects models. Here we outline a procedure which is an extension of the Laplace approximation and which attempts to find changes of variable for which the integrand becomes approximately a product of one-dimensional functions. When the integrand is a product of one-dimensional functions, an approximation to the integral can be obtained using one-dimensional quadrature. The approximation is exact for a broader class of functions than the ordinary Laplace approximation and can be applied when the integrand is not smooth at the mode. As an illustration of this last point we consider calculation of marginal likelihoods for smoothing parameter selection in the lasso.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00098-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:79:y:2009:i:11:p:1397-1403
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().