EconPapers    
Economics at your fingertips  
 

Efficient estimation of adaptive varying-coefficient partially linear regression model

Zhensheng Huang and Riquan Zhang

Statistics & Probability Letters, 2009, vol. 79, issue 7, 943-952

Abstract: The adaptive varying-coefficient partially linear regression (AVCPLR) model is proposed by combining the nonparametric regression model and varying-coefficient regression model with different smoothing variables. It can be seen as a generalization of the varying-coefficient partially linear regression model, and it is also an example of a generalized structured model as defined by Mammen and Neilsen [Mammen, E., Nielsen, J.P., 2003. Generalised structured models. Biometrika 90, 551-566]. Based on the local linear technique and the marginal integrated method, the initial estimators of these unknown functions are obtained, each of which has big variance. To decrease the variances of these initial estimators, the one-step backfitting technique proposed by Linton [Linton, O.B., 1997. Efficient estimation of additive nonparametric regression models. Biometrika 82, 93-100] is used to obtain the efficient estimators of all unknown functions for the AVCPLR model, and their asymptotic normalities are studied. Two simulated examples are given to illustrate the AVCPLR model and the proposed estimation methodology.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00550-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:79:y:2009:i:7:p:943-952

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:79:y:2009:i:7:p:943-952