Polar sets for anisotropic Gaussian random fields
Jakob Söhl
Statistics & Probability Letters, 2010, vol. 80, issue 9-10, 840-847
Abstract:
This paper studies polar sets for anisotropic Gaussian random fields, i.e. sets which a Gaussian random field does not hit almost surely. The main assumptions are that the eigenvalues of the covariance matrix are bounded from below and that the canonical metric associated with the Gaussian random field is dominated by an anisotropic metric. We deduce an upper bound for the hitting probabilities and conclude that sets with small Hausdorff dimension are polar. Moreover, the results allow for a translation of the Gaussian random field by a random field, that is independent of the Gaussian random field and whose sample functions are of bounded Hölder norm.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00030-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:80:y:2010:i:9-10:p:840-847
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().