EconPapers    
Economics at your fingertips  
 

Convergence of multi-class systems of fixed possibly infinite sizes

Carl Graham

Statistics & Probability Letters, 2011, vol. 81, issue 1, 31-35

Abstract: Multi-class systems having possibly both finite and infinite classes are investigated under a natural partial exchangeability assumption. It is proved that the conditional law of such a system, given the vector constituted by the empirical measures of its finite classes and the directing measures of its infinite ones (given by the de Finetti Theorem), corresponds to sampling independently from each class, without replacement from the finite classes and i.i.d. from the directing measure for the infinite ones. The equivalence between the convergence of multi-exchangeable systems with fixed class sizes and the convergence of the corresponding vectors of measures is then established.

Keywords: Interacting; particle; systems; Multi-class; systems; Mixtures; Partial; exchangeability; de; Finetti; Theorem (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00265-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:1:p:31-35

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:31-35