Quantile regression with an epsilon-insensitive loss in a reproducing kernel Hilbert space
Jinho Park and
Jeankyung Kim
Statistics & Probability Letters, 2011, vol. 81, issue 1, 62-70
Abstract:
This paper proposes a method to estimate the conditional quantile function using an epsilon-insensitive loss in a reproducing kernel Hilbert space. When choosing a smoothing parameter in nonparametric frameworks, it is necessary to evaluate the complexity of the model. In this regard, we provide a simple formula for computing an effective number of parameters when implementing an epsilon-insensitive loss. We also investigate the effects of the epsilon-insensitive loss.
Keywords: Epsilon-insensitive; loss; Quantile; regression; Reproducing; kernel; Hilbert; space (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00269-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:1:p:62-70
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().