Dependence between two multivariate extremes
H. Ferreira
Statistics & Probability Letters, 2011, vol. 81, issue 5, 586-591
Abstract:
We extend the characterizations given by Takahashi (1988) for the independence and the total dependence of the univariate marginals of a multivariate extreme value distribution to its multivariate marginals. We also deal with the problem of how to measure the strength of the dependence among multivariate extremes. By presenting new definitions for the extremal coefficient, we propose measures that summarize the dependence between two multivariate extreme value distributions and preserve the main properties of the known bivariate coefficient for two univariate extreme value distributions. Finally, we illustrate these contributions to model the dependence among multivariate marginals with examples.
Keywords: Independence; Total; dependence; Multivariate; extreme; value; distribution; Multivariate; marginals; Dependence; coefficients (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(11)00021-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:81:y:2011:i:5:p:586-591
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().