Objective Bayesian analysis for a truncated model
Haiying Wang and
Dongchu Sun
Statistics & Probability Letters, 2012, vol. 82, issue 12, 2125-2135
Abstract:
In this paper, the reference prior is developed for a truncated model with boundaries of support as two functions of an unknown parameter. It generalizes the result obtained in a recent paper by Berger et al. (2009), in which a rigorous definition of reference priors was proposed and the prior for a uniform distribution with parameter-dependent support was derived. The assumption on the order of the derivatives of these two boundary functions, required by Berger et al. (2009), is removed. In addition, we obtain the frequentist asymptotic distribution of Bayes estimators under the squared error loss function. Comparisons of the Bayesian approach with the frequentist approach are drawn in two examples in detail. Both theoretical and numerical results indicate that the Bayesian approach, especially under the reference prior, is preferable.
Keywords: Asymptotic; Bayes estimator; Non-regular; Reference prior; Truncated model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212002854
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:12:p:2125-2135
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.07.013
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().