When is a Markov chain regenerative?
Krishna B. Athreya and
Vivekananda Roy
Statistics & Probability Letters, 2014, vol. 84, issue C, 22-26
Abstract:
A sequence of random variables {Xn}n≥0 is called regenerative if it can be broken up into iid components. The problem addressed in this paper is that of determining under what conditions a Markov chain is regenerative. It is shown that an irreducible Markov chain with a countable state space is regenerative for any initial distribution if and only if it is recurrent (null or positive). An extension of this to the general state space case is also discussed.
Keywords: Harris recurrence; Markov chains; Monte Carlo; Recurrence; Regenerative sequence (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715213003192
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:84:y:2014:i:c:p:22-26
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.09.021
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().