Efficient almost-exact Lévy area sampling
Simon J.A. Malham and
Anke Wiese
Statistics & Probability Letters, 2014, vol. 88, issue C, 50-55
Abstract:
We present a new method for sampling the Lévy area for a two-dimensional Wiener process conditioned on its endpoints. An efficient sampler for the Lévy area is required to implement a strong Milstein numerical scheme to approximate the solution of a stochastic differential equation driven by a two-dimensional Wiener process whose diffusion vector fields do not commute. Our method is simple and complementary to those of Gaines–Lyons and Wiktorsson, and amenable to quasi-Monte Carlo implementation. It is based on representing the Lévy area by an infinite weighted sum of independent Logistic random variables. We use Chebyshev polynomials to approximate the inverse distribution function of sums of independent Logistic random variables in three characteristic regimes. The error is controlled by the degree of the polynomials, we set the error to be uniformly 10−12. We thus establish a strong almost-exact Lévy area sampling method. The complexity of our method is square logarithmic. We indicate how it can contribute to efficient sampling in higher dimensions.
Keywords: Lévy area; Strong simulation; Logistic expansion; Chebyshev approximation; Milstein method (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214000339
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:88:y:2014:i:c:p:50-55
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.01.022
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().