EconPapers    
Economics at your fingertips  
 

Geometric ergodicity of the Gibbs sampler for the Poisson change-point model

Matthew Fitzpatrick

Statistics & Probability Letters, 2014, vol. 91, issue C, 55-61

Abstract: Poisson change-point models have been widely used for modelling inhomogeneous time-series of count data. There are a number of methods available for estimating the parameters in these models using iterative techniques such as MCMC. Many of these techniques share the common problem that there does not seem to be a definitive way of knowing the number of iterations required to obtain sufficient convergence. In this paper, we show that the Gibbs sampler of the Poisson change-point model is geometrically ergodic. Establishing geometric ergodicity is crucial from a practical point of view as it implies the existence of a Markov chain central limit theorem, which can be used to obtain standard error estimates. We prove that the transition kernel is a trace-class operator, which implies geometric ergodicity of the sampler. We then provide a useful application of the sampler to a model for the quarterly driver fatality counts for the state of Victoria, Australia.

Keywords: Gibbs sampler; Geometric ergodicity; Trace-class; Poisson change-point model; Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214001394
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:91:y:2014:i:c:p:55-61

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2014.04.008

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:91:y:2014:i:c:p:55-61