A kernel-assisted imputation estimating method for the additive hazards model with missing censoring indicator
Zhiping Qiu,
Xiaoping Chen and
Yong Zhou
Statistics & Probability Letters, 2015, vol. 98, issue C, 89-97
Abstract:
In this paper, a nonparametric imputation method is developed for the additive hazards model when the censoring indicator is missing at random (MAR). The asymptotic properties of the proposed estimator are derived and the performance of the proposed estimator is demonstrated by a numerical simulation.
Keywords: Additive hazards model; Imputation; Kernel smoothing; Missing at random; Missing data (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521400409X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:98:y:2015:i:c:p:89-97
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.12.006
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().