Scheduling intelligent charging robots for electric vehicle: A deep reinforcement learning approach
Yi Ding,
Ming Deng,
Ginger Y. Ke,
Yingjun Shen and
Lianmin Zhang
Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 200, issue C
Abstract:
The surge in popularity of electric vehicles (EVs) has created a need for adaptable and flexible charging infrastructure. Intelligent Charging Robots (ICRs) have emerged as a promising solution to overcome issues faced by fixed charging stations, such as insufficient coverage, station occupancy, spatial constraints, and strain on the power grid. Nonetheless, optimizing the operational efficiency of ICRs presents a significant challenge. This study focuses on optimizing the scheduling of ICRs in a public parking facility through Deep Reinforcement Learning (DRL) methods. We first introduce the Intelligent Charging Robots Scheduling Problem (ICRSP) that maximizes either the number of EVs served (MN) or the total output electricity of ICRs (ME), and establish the corresponding mathematical model. Then, a DRL framework based on the Transformer structure is proposed to tackle ICRSP by integrating decisions of ICR assignment and EV sequencing to enhance solution quality. Furthermore, we devise a masking mechanism in the decoder to manage ICRs’ self-charging behavior during the charging service. Finally, experimental results validate the effectiveness of the proposed DRL approach in providing efficient scheduling solutions for large-scale ICRSP instances. The comparative analysis of MN-ICRSP and ME-ICRSP models offers valuable insights for ICRs operation scheduling, aiding in balancing operator revenue and customer satisfaction.
Keywords: Intelligent charging robots; Electric vehicles; Mobile charging scheduling; Deep reinforcement learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554525001310
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:200:y:2025:i:c:s1366554525001310
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2025.104090
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().