Integrated train rescheduling and passenger reassignment for disrupted high-speed railway networks: A hierarchical Benders decomposition and column generation approach
Cong Xiu,
Jinyi Pan,
D’Ariano, Andrea,
Shuguang Zhan,
Marta Leonina Tessitore and
Qiyuan Peng
Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 200, issue C
Abstract:
Disruptions can render parts of the critical transportation systems unavailable, forcing both trains and passengers to adapt. This study addresses the integrated rescheduling problem in a high-speed railway network during severe disruptions, focusing on train routing, timetable adjustments, and passenger reassignment. We employ rescheduling strategies that allow disrupted trains to reroute through alternative paths within stations and across the network, utilizing remaining capacity to ensure reliable service for affected passengers. To tackle this issue, we propose a path-based mixed-integer linear programming (MILP) model based on detailed space–time networks, aiming to minimize total train delays and passenger inconvenience caused by disruptions. However, solving this integrated model using the column generation method presents convergence challenges as the problem scale increases. To address these challenges, we introduce a hierarchical solution framework with two main components: (1) a Benders decomposition-based procedure to iteratively capture the interaction between train rescheduling and passenger reassignment, and (2) two column generation procedures to explore promising space–time paths for both trains and passengers. Additionally, a dynamic constraint generation technique is integrated to further accelerate the solution process. Numerical experiments using real-world data from Chinese high-speed railway network validate the effectiveness of the proposed approach. The results show that our method delivers high-quality solutions within an acceptable time frame, efficiently reassigning passengers and rerouting trains during disruptions. Experimental findings also reveal that integrated modeling improves overall efficiency by 17.32% on average compared to sequential modeling. Furthermore, the proposed hierarchical algorithm significantly outperforms traditional column generation methods, reducing computation time by an average of 53.82%.
Keywords: High-speed railway; Train rescheduling; Mixed-integer linear programming; Benders decomposition; Column generation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554525002182
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:200:y:2025:i:c:s1366554525002182
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2025.104177
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().