EconPapers    
Economics at your fingertips  
 

Integer programming as projection

H. Paul Williams and J. N. Hooker

LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library

Abstract: We generalise polyhedral projection (Fourier-Motzkin elimination) to integer programming (IP) and derive from this an alternative perspective on IP that parallels the classical theory. We first observe that projection of an IP yields an IP augmented with linear congruence relations and finite-domain variables, which we term a generalised IP. The projection algorithm can be converted to a branch-and-bound algorithm for generalised IP in which the search tree has bounded depth (as opposed to conventional branching, in which there is no bound). It also leads to valid inequalities that are analogous to Chv´atal-Gomory cuts but are derived from congruences rather than rounding, and whose rank is bounded by the number of variables. Finally, projection provides an alternative approach to IP duality. It yields a value function that consists of nested roundings as in the classical case, but in which ordinary rounding is replaced by rounding to the nearest multiple of an appropriate modulus, and the depth of nesting is again bounded by the number of variables.

JEL-codes: J01 R14 (search for similar items in EconPapers)
Pages: 23 pages
Date: 2014-01
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://eprints.lse.ac.uk/55426/ Open access version. (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:55426

Access Statistics for this paper

More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().

 
Page updated 2025-03-31
Handle: RePEc:ehl:lserod:55426