The optimal consumption function in a Brownian model of accumulation part B: existence of solutions of boundary value problems
Lucien Foldes
LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library
Abstract:
In Part A of the present study, subtitled 'The Consumption Function as Solution of a Boundary Value Problem' Discussion Paper No. TE/96/297, STICERD, London School of Economics, we formulated a Brownian model of accumulation and derived sufficient conditions for optimality of a plan generated by a logarithmic consumption function, i.e. a relation expressing log-consumption as a time-invariant, deterministic function H(z) of log-capital z (both variables being measured in 'intensive' units). Writing h(z) = H'(z), J(z) = exp{H(z)-z}, the conditions require that the pair (h,J) satisfy a certain non-linear, non-autonomous (but asymptotically autonomous) system of o.d.e.s (F,G) of the form h'(z) = F(h,J,z), J'(z) = G(h,J) = (h-1)J for real z, and that h(z) and J(z) converge to certain limiting values (depending on parameters) as z tends to + or - infinity. The present paper, which is self-contained mathematically, analyses this system and shows that the resulting two-point boundary value problem has a (unique) solution for each range of parameter values considered. This solution may be characterised as the connection between saddle points of the autonomous systems obtained from (F,G) as z tends to + or - infinity.
Keywords: Consumption; capital accumulation; Brownian motion; optimisation; ordinary; differential equations; boundary value problems (search for similar items in EconPapers)
JEL-codes: D90 E13 O41 (search for similar items in EconPapers)
Pages: 85 pages
Date: 2014-11-04
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://eprints.lse.ac.uk/60956/ Open access version. (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:60956
Access Statistics for this paper
More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().