EconPapers    
Economics at your fingertips  
 

The optimal consumption function in a Brownian model of accumulation. Part C: a dynamical system formulation

Lucien Foldes

LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library

Abstract: This Paper continues the study of the Optimal Consumption Function in a Brownian Model of Accumulation, see Part A [2001] and Part B [2014]; a further Part D, dealing with the effects of perturbations of the Brownian model, is in preparation. We begin here with a review of the o.d.e. system S which was used in Part B for the proof of the existence of an optimal consumption function. This system is non-linear, two dimensional but bilaterally asymptotically autonomous with limiting systems as log-capital tends to plus/minus infinity, each of which has a unique saddle point. An important part is played in the existence proof by the sets of forward/backward ‘special’ solutions, i.e. solutions of S converging to the asymptotic saddle points, and by their representing functions f and g. A ‘star’ solution, which is both a forward and a backward special solution, corresponds to an optimal consumption function. It is shown here that the sets of special solutions of S are C(1) sub-manifolds of R(3), hence that the functions f and g are continuously differentiable. The argument involves the construction of an imbedding of S in a 3-D autonomous dynamical system such that the asymptotic saddle points are mapped to saddle points of the 3-D system and the sets of forward/backward special solutions are mapped into stable/unstable manifolds. The usual Stable/Unstable Manifold Theorem for hyperbolic stationary points then yields the required C(1) properties locally (i.e. near saddle points), and these properties can be extended globally. A ‘star’ solution of S then corresponds to a saddle connection in the 3-D system. A stability result for the saddle connection is given for a special case.

Keywords: consumption; capital accumulation; Brownian motion; optimisation; ordinarydifferential equations; boundary value problems (search for similar items in EconPapers)
JEL-codes: D90 E13 O41 (search for similar items in EconPapers)
Pages: 69 pages
Date: 2017-03-30
References: Add references at CitEc
Citations:

Downloads: (external link)
http://eprints.lse.ac.uk/85121/ Open access version. (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:85121

Access Statistics for this paper

More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().

 
Page updated 2025-03-31
Handle: RePEc:ehl:lserod:85121