QUASI–MAXIMUM LIKELIHOOD ESTIMATION WITH BOUNDED SYMMETRIC ERRORS
Douglas Miller,
James Eales and
Paul Preckel
A chapter in Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, 2003, pp 133-148 from Emerald Group Publishing Limited
Abstract:
We propose a quasi–maximum likelihood estimator for the location parameters of a linear regression model with bounded and symmetrically distributed errors. The error outcomes are restated as the convex combination of the bounds, and we use the method of maximum entropy to derive the quasi–log likelihood function. Under the stated model assumptions, we show that the proposed estimator is unbiased, consistent, and asymptotically normal. We then conduct a series of Monte Carlo exercises designed to illustrate the sampling properties of the quasi–maximum likelihood estimator relative to the least squares estimator. Although the least squares estimator has smaller quadratic risk under normal and skewed error processes, the proposed QML estimator dominates least squares for the bounded and symmetric error distribution considered in this paper.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(03)17006-5
DOI: 10.1016/S0731-9053(03)17006-5
Access Statistics for this chapter
More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().