A New Class of Tail-dependent Time-Series Models and Its Applications in Financial Time Series
Zhengjun Zhang
A chapter in Econometric Analysis of Financial and Economic Time Series, 2006, pp 317-352 from Emerald Group Publishing Limited
Abstract:
In this paper, the gamma test is used to determine the order of lag-k tail dependence existing in financial time series. Using standardized return series, statistical evidences based on the test results show that jumps in returns are not transient. New time series models which combine a specific class of max-stable processes, Markov processes, and GARCH processes are proposed and used to model tail dependencies within asset returns. Estimators for parameters in the models are developed and proved to be consistent and asymptotically joint normal. These new models are tested on simulation examples and some real data, the S&P 500.
Date: 2006
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(05)20033-6
DOI: 10.1016/S0731-9053(05)20033-6
Access Statistics for this chapter
More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().