Bayesian analysis of treatment effects in an ordered potential outcomes model
Mingliang Li and
Justin L. Tobias
A chapter in Modelling and Evaluating Treatment Effects in Econometrics, 2008, pp 57-91 from Emerald Group Publishing Limited
Abstract:
We describe a new Bayesian estimation algorithm for fitting a binary treatment, ordered outcome selection model in a potential outcomes framework. We show how recent advances in simulation methods, namely data augmentation, the Gibbs sampler and the Metropolis-Hastings algorithm can be used to fit this model efficiently, and also introduce a reparameterization to help accelerate the convergence of our posterior simulator. Conventional “treatment effects” such as the Average Treatment Effect (ATE), the effect of treatment on the treated (TT) and the Local Average Treatment Effect (LATE) are adapted for this specific model, and Bayesian strategies for calculating these treatment effects are introduced. Finally, we review how one can potentially learn (or at least bound) the non-identified cross-regime correlation parameter and use this learning to calculate (or bound) parameters of interest beyond mean treatment effects.
Date: 2008
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.101 ... 0731-9053(07)00003-5
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(07)00003-5
DOI: 10.1016/S0731-9053(07)00003-5
Access Statistics for this chapter
More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().