Bayesian student-t
S.T. Boris Choy,
Wai-yin Wan and
Chun-man Chan
A chapter in Bayesian Econometrics, 2008, pp 595-618 from Emerald Group Publishing Limited
Abstract:
The normal error distribution for the observations and log-volatilities in a stochastic volatility (SV) model is replaced by the Student-t distribution for robustness consideration. The model is then called the t-t SV model throughout this paper. The objectives of the paper are twofold. First, we introduce the scale mixtures of uniform (SMU) and the scale mixtures of normal (SMN) representations to the Student-t density and show that the setup of a Gibbs sampler for the t-t SV model can be simplified. For example, the full conditional distribution of the log-volatilities has a truncated normal distribution that enables an efficient Gibbs sampling algorithm. These representations also provide a means for outlier diagnostics. Second, we consider the so-called t SV model with leverage where the observations and log-volatilities follow a bivariate t distribution. Returns on exchange rates of Australian dollar to 10 major currencies are fitted by the t-t SV model and the t SV model with leverage, respectively.
Date: 2008
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.101 ... 0731-9053(08)23019-7
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:aecozz:s0731-9053(08)23019-7
DOI: 10.1016/S0731-9053(08)23019-7
Access Statistics for this chapter
More chapters in Advances in Econometrics from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().